Iliotibial band tension affects patellofemoral and tibiofemoral kinematics.

نویسندگان

  • Azhar M Merican
  • Andrew A Amis
چکیده

The iliotibial band (ITB) has an important role in knee mechanics and tightness can cause patellofemoral maltracking. This study investigated the effects of increasing ITB tension on knee kinematics. Nine fresh-frozen cadaveric knees had the components of the quadriceps loaded with 175 N. A Polaris optical tracking system was used to acquire joint kinematics during extension from 100 degrees to 0 degrees flexion. This was repeated after the following ITB loads: 30, 60 and 90 N. There was no change with 30 N load for patellar translation. On average, at 60 and 90 N, the patella translated laterally by 0.8 and 1.4mm in the mid flexion range compared to the ITB unloaded condition. The patella became more laterally tilted with increasing ITB loads by 0.7 degrees, 1.2 degrees and 1.5 degrees for 30, 60 and 90 N, respectively. There were comparable increases in patellar lateral rotation (distal patella moves laterally) towards the end of the flexion cycle. Increased external rotation of the tibia occurred from early flexion onwards and was maximal between 60 degrees and 75 degrees flexion. The increase was 5.2 degrees, 9.5 degrees and 13 degrees in this range for 30, 60 and 90 N, respectively. Increased tibial abduction with ITB loads was not observed. The combination of increased patellar lateral translation and tilt suggests increased lateral cartilage pressure. Additionally, the increased tibial external rotation would increase the Q angle. The clinical consequences and their relationship to lateral retinacular releases may be examined, now that the effects of a tight ITB are known.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of abnormal hip mechanics on knee injury: a biomechanical perspective.

UNLABELLED During the last decade, there has been a growing body of literature suggesting that proximal factors may play a contributory role with respect to knee injuries. A review of the biomechanical and clinical studies in this area indicated that impaired muscular control of the hip, pelvis, and trunk can affect tibiofemoral and patellofemoral joint kinematics and kinetics in multiple plane...

متن کامل

Gender differences in lower limb kinematics during stair descent.

The purpose of this study was to compare lower limb kinematics between genders during stair descent. Fifteen females and fifteen males who were healthy and active were included in this study. The lower limb kinematics (pelvis, femur and knee) in the coronal and transversal planes were assessed during stair descent at 30°, 40°, 50° and 60° of knee flexion. The study found that females showed gre...

متن کامل

Tibiofemoral and patellofemoral joint 3D-kinematics in patients with posterior cruciate ligament deficiency compared to healthy volunteers

BACKGROUND The posterior cruciate ligament (PCL) plays an important role in maintaining physiological kinematics and function of the knee joint. To date mainly in-vitro models or combined magnetic resonance and fluoroscopic systems have been used for quantifying the importance of the PCL. We hypothesized, that both tibiofemoral and patellofemoral kinematic patterns are changed in PCL-deficient ...

متن کامل

Patellar hypomobility and the flexibility of the iliotibial band and the femoral quadriceps.

Background. The aim of our study was to determine whether or not the flexibility of the iliotibial band and femoral quadriceps have an impact on patellar hypomobility, due to their connections with the patellar stabilizers. Material and methods. We examined 62 patients (44 females, 18 males) with a median age of 15 years (range 9-19). All these patients had patellofemoral dysfunction in the tes...

متن کامل

Three-dimensional dynamic simulation of total knee replacement motion during a step-up task.

A three-dimensional dynamic model of the tibiofemoral and patellofemoral articulations was developed to predict the motions of knee implants during a step-up activity. Patterns of muscle activity, initial joint angles and velocities, and kinematics of the hip and tinkle were measured experimentally and used as inputs to the simulation. Prosthetic knee kinematics were determined by integration o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 42 10  شماره 

صفحات  -

تاریخ انتشار 2009